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SUMMARY 

A finite element method for solving shallow water flow problems is presented. The standard Galerkin 
method is employed for spatial discretization. The numerical integration scheme for the time variation 
is the explicit two step scheme, which was originated by the authors and their co-workers. However, 
the original scheme has been improved to remove the erroneous artifical damping effect. Since the 
improved scheme employs a combination of lumped and unlumped coefficients, the scheme is referred 
to as a selective lumping scheme. Stability conditions and accuracy are investigated by considering 
several numerical examples. The method has been applied to the tidal flow in Osaka Bay and 
Yatsushiro Bay. 
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INTRODUCTION 

In the analysis of the unsteady shallow water flow by the finite element method, it is always 
necessary to introduce a numerical integration procedure for the time function. A large 
number of integration methods have been presented in the literature and these can be 
classified into three categories. The first is the method which will employ an analytical 
solution.'-3 However, in practice, this is severely restricted in application. The second is the 
method which employs constituent decomposition such as a Fourier analysis and is usually 
applied in tidal modelling."12 The third, which is the most widely used method, is referred to 
as the time marching method. This is a numerical integration procedure in which total time 
to be analysed is divided into a large number of very short time intervals associated with 
discrete times and the numerical integration is carried out for each time interval using the 
numerical values calculated previously. 

The time marching schemes can be grouped into two categories, namely, the implicit 
scheme,1349 which requires the procedures to solve an algebraic simultaneous equation 
system, and the explicit which does not require the procedure. It is noted that in 
general computations conducted using the implicit scheme are more stable than for the 
explicit scheme. However, the computational times for implicit schemes are usually quite 
large when solving an algebraic simultaneous equation system. To save computational time 
in an implicit scheme, a numerical integration based on a topologically regular finite element 
arrangement has been presented.l3?l4 However, this topologically regular arrangement is not 
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useful for practical problems. Moreover, the computational time for each time cycle in the 
explicit scheme is far shorter than that in the implicit scheme although the time increment 
chosen should be shorter. The core storage requirement in the explicit scheme is also much 
less than that in the implicit scheme. In addition, for several coastal sea models, especially in 
tidal modelling, a secondary wave is apparent which has a higher frequency than that of the 
wave incident at the boundary. These higher modes are induced by the effect of irregular 
configuration of the coastline and bottom topography. For these problems, it is dangerous to 
use the implicit scheme since the selection of a long time increment sometimes misses the 
higher frequency mode. Considering the above-mentioned items, the explicit numerical 
integration in time could be concluded to be much more preferable for practical computa- 
tions. 

The numerical integration scheme employed in this paper is the explicit two step scheme. 
The original scheme has been presented by Kawahara et al.55-62 After several observations, it 
was concluded that the numerical results obtained by the original scheme include slight 
artifical damping.25 Therefore, in this paper, the scheme has been improved to remove this 
erroneous artifical damping effect. The improved scheme is referred to as the ‘selective 
lumping two step explicit scheme’. It is necessary to investigate the numerical property of the 
scheme before applying it to practical problems. For this purpose, the stability and damping 
properties of the selective lumping two step scheme have been tested using the one- 
dimensional shallow water equation with the damping effect being evaluated empirically. 
Following this, the numerical results obtained using the selective lumping scheme have been 
compared with the observed data obtained from an Osaka Bay model. It can be concluded 
that the numerical damping effect in computations using the improved scheme is insignificant 
and that the numerical procedure is simple and stable. The finite element method using the 
selective lumping two step explicit scheme has been applied to analysis of tidal flats in 
Y atsushiro Bay, Japan. 

BASIC EQUATIONS 

It is commonly known that the behaviour of current flow in estuaries and coastal seas can be 
expressed by the shallow water flow equation. Assuming the density of water is constant, the 
basic equations can be derived from the three-dimensional Navier-Stokes equation by 
integrating over the water depth and assuming hydrostatic pressure. The equation of motion 
and the equation of continuity can be described in the following form 

a 5 , { ( H + f ) y } , i  at = o  

where ui and 5 represent the vertically averaged velocity and water elevation from the mean 
sea level, and g, H, Al are gravity acceleration, water depth, eddy viscosity respectively. The 
bottom fricition 78 is assumed by the Chezy formula as 

where C is a Chezy coefficient. Coriolis forces and surface friction are, for simplicity, both 
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ignored. Here and henceforth, indicia1 notation is used and the usual summation convention 
with repeated indices is employed. 

Four types of condition are introduced, viz, the conditions for velocity, surface flux, 
surface discharge and water elevation. On the boundary S1, the velocity is postulated in the 
form 

u,=ii, onS, (4) 
where superscripted A means the value which is specified on the boundary. On the boundary 
S2, a surface flux is assumed 

ri = Al(u,,i + uj,,)ni = i, on S2 ( 5 )  
where ni are the components of the unit normals to the boundary. A surface discharge is 
specified on boundary S3, 

q = ( H + l ) % n i = i j  0nS3 (6) 

i = f  onS, (7) 

and the water elevation is given on the boundary S,, 

The whole boundary S of the domain V to be analysed is assumed to consist of S1 and S2 
with 

slns2= I;? 

s1 u s z  = s 

s 3 n s 4 = 0  
s3us,=s 

where 0 is the null set. For the boundary S3 and S,, a similar relation is introduced, 

The precise discussions on the natural boundary conditions are described by Ka~ahara . '~  

FINITE ELEMENT FORMULATION 

The standard Galerkin finite element method is employed for the spatial discretization and 
the flow field to be analysed is divided into small regions called finite elements. Multiplying 
both sides of equations (1) and (2) by weighting functions u? and 6" and integrating over the 
domain V, the weighted residual equations can be derived in the form 

1" (u?:) d V +  (u"y.yi) dV+ L (u?&) dV+ L Al(uTiuj,i) dV 

Current velocity components, water elevation and their corresponding weighting functions 
are interpolated in each finite element as follows 
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where @, denotes the interpolation function for velocity or water elevation and uai, 5, are 
the mean velocity and water elevation at the a th  node of each finite element, uzi, r;: are the 
nodal values of the weighting function for each finite element. For the interpolation 
functions, standard linear functions based on the three node triangular finite element are 
used. 

The Galerkin procedure leads, upon substituting equations (12)-( 15) into equations (10) 
and (ll), to the following finite element equation 

where 

A a p j y =  J ( @ a , j @ p @ y )  d v  
V 

Baaj = A u a y j  * H y  

where the bottom friction term is linearized and the water depth at each finite element is 
interpolated as 

H = aaHa (18) 
in which Ha denotes the water depth at each nodal point of the finite element. The 
Kronecker delta function is denoted by Sip 

Superposing equations (16) and (17) for all nodal points in the whole flow field, the final 
finite element equation can be derived as a non-linear first order simultaneous differential 
equation system. 

SELECTIVE LUMPING FINITE ELEMENT METHOD 

The finite element equation discretized in terms of the spatial function can be expressed in 
the form 

where V, and Z, denote the velocity and water surface elevation at all nodal points in the 
flow field. The coefficients of equations (19) and (20) can be derived by the superposition of 
equations (16) and (17). 

To solve equations (19) and (20), it is necessary to introduce a numerical integration 
scheme in time. The integration scheme employed in this paper, as stated previously, is 
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referred to as the selective lumping two step explicit scheme. The original scheme has been 
presented by Kawahara et u1.55-62 The total time to be analysed is divided into a number of 
discrete time points, one of which is denoted by nth time point. The short time interval 
between the nth and ( n  + 1)th time points is expressed by At. The selective lumping scheme 
could be divided into two methods, depending on whether the basic equations include the 
viscosity term or not. 

In the case when the finite element equations include the viscosity term, the selective 
lumping scheme can be expressed as follows for the first step 

and for the second step 

MuPV:+l = Mas V: - At(K&V;+*l?+* + NaPZ';i+4 + Sap V:) 

M,J;+l = a P P  Zn - At(A aPY V;+:Z;+d + s 4 Z;;+*) 
(23) 

(24) 

where superscripted n denotes the value at the nth time point. The overbar - on the 
coefficient Mas expresses the lumped coefficient and Gap is the selective lumping coefficient: 

GaB = .Map + (1 - e)M,, (25) 

i.e. the coefficient derived from a combination of the lumped and unlumped coefficients. In 
equation (25), the parameter e expresses the ratio of the lumped coefficient, which is 
referred to as the selective lumping parameter. The technique expressed in equations 
(21)-(24) using i$ip is found to stabilize the numerical integration in time and to reduce 
considerably the artificial damping effect. If the selective lumping parameter e is chossen to 
be zero, the scheme is exactly coincident with the original scheme presented by Kawahara et 
a1.5562 

For the case when the finite element equations exclude the viscosity term, it is necessary to 
modify the selective lumping scheme as follows: 
for the first step 

and for the second step 

Map 'Vnp+' = V: - At ( Kapy V;;+$ K't + NaPZi+*) (28) 

(29) 

The scheme depicted by equations (21)-(24) is used when the viscosity term is neglected; the 
scheme, unfortunately, turns out to be unstable. Therefore, it is necessary to introduce the 
stablizing technique in equations (21) and (23). The selective lumping scheme in equations 
(26)-(29) is thus derived. 

a6 = fi a P  Z; -&(A 4h V;;+$Z;+% + BapZn+' P 
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STABILlTY CONSIDERATION 

The CF'L stability condition of the selective lumping scheme is argued for the one dimen- 
sional linear shallow water equation. The basic equation is written as 

au ag - +g-=o 
at ax 

a5 au -+H-=O 
at ax 

where u and 5 represent the velocity and water elevation and g, N are the acceleration due 
to gravity and water depth, respectively. The water depth H is assumed for simplicity to be 
constant for the whole domain. Introducing a linear interpolation function for each finite 
element of length Ax, the finite element equation can be described in the following form. 

where uo and 5, denote the velocity and water elevation at 0th node of the finite element 
and 

Ax Ax 1 1  

- -  

The lumped and the selective lumping coefficients are expressed as follows. 

Ax 

Superposing equations (32) and (33), the selective lumping finite element scheme for the ith 
nodal point can be written as: 
for the first step 

and for the second step 

u;+l= ( T ) U : - ~  l - e  + ( r ) u : +  2 + e  ( ~ ) u ; + ~  l - e  - pg{ (-i)g:2)+ (;)g::)] (36) 

where 
At 
Ax 

p = - .  
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Consider the solution of the type 

u; = 27" exp ( j w i )  

(f = S" exp ( jwi )  

95 

(39) 
(40) 

where j is the imaginary unit and R, S are the amplification factors of velocity and water 
elevation respectively. Introducing equations (39) and (40) into equations (34)-(37) and 
rearranging the terms, the following equation can be derived. 

where 
2+e  1-e 

3 3  a=-+- cos w 

b = - jp  sin w 

The CFX stability condition can be obtained from equation (41) by using the fact that the 
eigenvalues of the coefficient matrix should be less than 1. The result is 

Equation (42) indicates how to choose the time increment At. The time increment should be 
chosen to be as long as possible whilst maintaining stability. Several numerical computations 
indicate that the numerical damping effect was minimum for maximum At. 

If e is equal to 0 equation (42) turns out to be the criterion in the case of the original two 
step explicit scheme. Apparently, the original scheme is associated with the longest At but 
the accuracy is less. Even if e is chosen to be 1, the computation is still stable but the scheme 
should use the shortest time increment. Actually, in a practical computation, it is necessary 
to employ 0.95 > e > 0.8. From the authors' numerical experiments, a selective lumping 
parameter e within these limits does not give rise to erroneous numerical damping. 

NUMERICAL TEST EXAMPLE 

The first example is the analysis of a solitary wave propagated along a one-dimensional 
channel with uniform bottom slope. The finite element idealization and the initial configura- 
tion of the solitary wave is shown in Figure 1. Although the deformation phenomenon is 
limited to one-dimensional behaviour, the analysis has been performed using the two- 
dimensional computer program. The number of subdivisions illustrated in Figure 1 is 
denoted by N, i.e. the finite element mesh with N=40  is shown in Figure 1. 

The computed results are represented in Figures 2-5. In Figure 2,  the numerical results 
obtained by the original two step explicit scheme (i.e. the lumping parameter e = 0) are 
plotted. The qualitative behaviour of the analytical solution indicates that the peak value 
gradually becomes higher as the solitary wave approaches the shallower domain. In the case 
when the number of subdivisions is not large enough (e.g. N=40  or 80), a completely 
dissipated solitary wave has been computed. This is contrary to the expected behaviour. The 
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I 
Initial condition 

?=ao sech' 8 (3a, ) .i (x-  d' ) 

u =  - (1 ++a, )?/ (ax+ 7) 

a. = O . l , g = 1 . 0 ,  a=& 

I 
L 1 0 - - L  10 I 

Figure 1. Finite element idealization of channel and initial condition 

computed results seem to include a significant damping effect. Furthermore, as the number 
of subdivisions is increased (e.g. N = 160 or 320) then the results seem to improve. However, 
the peak values are still lower than those of the exact solution. The final peak value of the 
analytical linear solution is 1.2 times the initial peak value. In the above computations, the 
time increment At is chosen to be as long as possible but within the limit where stable 
computations are obtained. 

In Figure 3, the numerical results using the selective lumping parameter e = 0.6 are 
presented. The numerical damping effect is still apparent in this example. However, as the 
number of subdivisions is increased, it is seen that the numerical results can be improved. In 
the computations in Figures 2 and 3 and also the following figures, the time increment At is 
chosen to be shorter as the number of subdivision grows larger. 

Figure 4 shows the numerical results obtained using the selective lumping parameter 
e = 0.8. In the case when the number of subdivisions is not large enough ( N  = 40 or 80), the 
computed results do not coincide with the analytical solution. On the other hand, using the 
number of subdivisions N = 160 or 320, the computed solitary waves are close to the 
analytical solution. Therefore, it is seen that the lumping parameter e should be used larger 
than 0.8 and the refined finite element mesh should also be employed. It can be deduced that 
the finite element mesh should be such that at least 40 nodal points should be included in 
one half wave. It is slightly regrettable but notable that the time increment At is the shortest 
in the case when e = 0.8 and N = 320. 
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Figure 6. Finite element idealization and boundary conditions 

In Figure 5, the computed results are illustrated for the case when N = 320 and e = 0.8 for 
various time increments At. With a rather long time increment (e.g. A=O*O76923 or 0-05), 
the computation is unstable. The selection of the time increment rests on the rule that a 
suitable time increment is the largest value within the limit that a stable computation can be 
performed. In this example, At = 0.03333 seems to be a suitable value. 

The second example is the computation of the propagation of a sinusoidal wave. Figure 6 
represents the finite element idealization and the specified boundary conditions. The total 
length of the channel L is 3000 m, while the minimum length of a finite element Ax is 100 m. 
The depth of the channel is assumed as 10 m. At the boundary A-B, the water elevation is 
given as 

l=  a sin t) (43) 

where a = 0.5 m and T = 300 sec. The wave expressed by equation (43) corresponds to the 
case where the wave length is almost equivalent to the channel length L. At the boundary 
A-B and C-D, a progressive wave condition, i.e. 

is considered, where H and g are water depth and acceleration due to gravity, respectively. 
Using the boundary conditions expressed by the equations (43) and (44), water elevation 
computed at the boundary C-D must be coincident with the one at the boundary A-B, i.e. l. 
The ratio of the computed water elevation at the boundary C-D to the specified water 
elevation at the boundary A-B is plotted in Figure 7 by the use of various selective lumping 

0.0 0.2 0.4 0.6 0.8 1.0 

the selective lumping parameter e 

Figure 7. Ratio of computed and specified water elevations 
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parameters e. The choice of the time increment At for each selective lumping parameter is 
independent and is made according to the stability condition expressed in equation (42). The 
time increment At is chosen as long as possible whilst the computations are stable. The time 
increment used is also plotted in Figure 7. 

The ratio has been computed using the value after the quasi-steady state has been reached. 
In the case when e = 0.0 and At = 10 sec, the ratio of the computed water elevation to the 
specified value is 0.85. On the other hand, in the case when e = 0.8 and At = 6 sec, the ratio 
is 0.97. Moreover, in the case when e = 0.9 and At = 4 sec, the ratio exceeds. 0-99. From the 
results shown in Figure 7, the following can be concluded: (i) The original scheme includes a 
significant numerical damping effect if the finite element idealization is insufficient; (ii) The 
numerical damping effect can be reduced by using the selective lumping technique; (iii) The 
lumping parameter can be chosen between e = 0.8 and e = 0.9. It is necessary that the time 
increment At be shorter than that used in the original scheme. 

TIDAL COMPUTATION OF OSAKA BAY 

The tidal current flow computation of Osaka Bay has been computed and compared with the 
observed data measured by the Maritime Safety Agency of Japan.67 The finite element 
idealization used in the computation is shown in Figure 8. The total number of nodal points 
and elements are 609 and 1055, respectively. Along the coastline, the normal velocity to the 
coast is assumed zero. The tidal elevations at the boundaries are specified as follows. 

,. t-Ct) 
y = a sin (12-i:hr. 

where a and a are listed in Table I. 
The computed velocity at high tide plus 3 hours is presented in Figure 9. The solid 

arrowed lines show the computed velocity and the dashed lines the observed velocity. At the 
Akashi Strait, the observed velocity attains values up to 3-00 mlsec. The corresponding 
computed velocity is 3.1 mlsec. Both results show quite reasonable agreement. In this 
computation, the selective lumping parameter e = 0.92 and the time increment At = 40 sec. 
The observed velocity is the value measured at 2 m below the water surface. Figure 10 is the 
comparison between computed and observed velocity at low tide plus 3 hours. The results 
also exhibit good agreement. 

Figure 11 illustrates the tidal residual flow computed by averaging the computed velocity 
at each time step over 25 hours and one compared with the observed data. The total 
circulation pattern as calculated is reasonably well in agreement with observed values. Two 
dominant circulations can be seen in the residual flow pattern of the observed velocity. On 
the other hand, the computed velocity shows the one distinct clockwise circulation. This 
discrepancy seems to be caused by the fact that the observed results include the circulation 
induced by the factors other than tide-such as wind, river flow and the difference of salinity 
density and temperature. The ratio of the computed velocity at the midpoint in the Akashi 
Strait divided by the observed velocity at the same point versus the selective lumping 
parameter is shown in Figure 12. The maximum velocity observed is 2-7 mlsec at high tide 
plus 3 hours. From the figure, it can be seen that in this case the selective lumping parameter 
is chosen to be 0.93 and shows that the computed velocity is coincident with the observed 
velocity. On the other hand, in this case, the time increment that must be used is 0.58 At,, 
where At, is the time increment which was used in the case when e = 0.0. In conclusion, it is 
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Finite element idealization 
Total node number 609 
Total element number 1055 

Figure 8. Finite element idealization of Osaka Bay 
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Table I 

Higashifutami Ei Numajima Kainan 

a 0.2846 m 0.3339 m 06286 m 0-6608 m 

01 294.64 deg. 327.06 deg. 179.80 deg. 188.19 deg. 

# #  / observed velocitv 

\ ' *  I ' t--c, 300.0CM/S 

Figure 9. Computed and observed velocity at high tide plus 3 hours (2 m below water surface) 
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Figure 10. Computed and observed velocity at low tide plus 3 hours (2 m below water surface) 

necessary to use the selective lumping parameter e larger than 0.85. Corresponding to this, 
the time increment could be shorter than that in the original scheme. The computations of 
this model have been carried out in association with the Port and Harbor Research Insititute, 
Ministry of Transport, Japan.68 

TIDAL COMPUTATION OF YATSUSHIRO BAY 

The tidal current flow of Yatsushiro Bay includes the tidal shoal. The mean tide observed at 
Yatsushiro City located at the coastline of Yatsushiro Bay shows that the half-diurnal tide is 
predominant rather than the diurnal tide. Along the coastline, there are several areas at 
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Figure 11. Computed and observed residual current velocity 

which the sea bed is exposed at low tide. Therefore, computations have to be carried out 
which include the exposed sea bed, which can be deduced from the following equations, 

if h = H +  t ; r 0  then the bed is exposed, and 
if h = H + t; < 0 then the bed is under water, 

where H is the water depth and t; is the water elevation; both are computed from the mean 
sea level. 

Using the triangular finite element, the variable definition at each element has been 
carried out according to the following rules. For each nodal point i of the finite element, 
water depth Hi, water elevation &, both components of current velocity K, ui will be given. 
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e = 0.00 

0.0 z e  0.2 0.4 0.6 0.8 1.0 

the selective lumping parameter e 

100 

80 

60 
40 

20 

0.0 0.2 0.4 0.6 0.8 1.0 

the selective lumping parameter e 

12. Ratio of computed and observed velocities and 
time increment employed in the computation 

The total water depth hi = Hi + & can be computed. The computation can be characterized 
by the following, 

(i) all nodal values of hi are 4 >0, 
(ii) at least one value of hi is hi > 0 and the rest of 

(iii) all values of hi are hi <O. 
In case (i), the element under consideration is under water. In case (ii), at the nodal point 

at which > 0, the water elevation and current velocity will be computed and at the nodal 
point at which hi <0, the water elevation will be computed but the current velocity will be 
treated as zero. In case (iii), the element is on the exposed sea bed and will be omitted from 
the computation. 

Figure 13 represents the finite element idealization of Yatsushiro Bay. The total numbers 
of nodal points and finite elements are 759 and 1279, respectively. The bed topography is 
shown in Figure 14. The tidal elevations specified at the boundaries, A-B, C-D, E-F, G-H 
are expressed generally as 

are hi <O, and 

2T 
12 hour 

= ( M ~  + s,) sin (- t )  
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100 * O C M I S  p . 0  , 5.0 KM - 
IW 1 ’. 150000 

Figure 17. Computed velocity at high tide 

where the tide of M2+S2 is shown in Figure 14. Along the coastline, the normal velocity to 
the coast is assumed to be zero. The turbulent eddy viscosity Ar is assumed to be 5.0 mz/sec 
and the bottom friction is 

1 n2 -=- 
c2 ~ 1 1 3  

where H is water depth and n = 0.05 m-li3 sec. 
The computed velocity and tidal shoal are illustrated in Figures 15-18. In Figure 15, the 

computed velocity at low tide is shown. It can be clearly seen that tidal flats are developed 
along the coastline. In Figure 16, the computed velocity at low tide plus 3 hours is plotted. 
The numerical results show the tidal shoal is disappearing. Figure 17 illustrates the computed 
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’ r  
f f I  

5 . 0  nn 1 00.  O C M / S  - 
1 : 150000 

Figure 18. Computed velocity at high tide plus 3 hours 

velocity at high tide. All the shoals are under water. Figure 18 represents the computed 
velocity at high tide plus 3 hours. It is seen that the shoal is exposed. The maximum velocity 
computed is 40 cmlsec. These numerical results have been applied to the water quality 
prediction analysis of Yatsushiro Port. The computations of this model have been carried out 
in association with the government of Kumamoto Prefecture, Japan. 
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